NetVec: A Scalable Hypergraph Embedding System

Sepideh Maleki¹, Donya Saless², Dennis P Wall³, and Keshav Pingali¹

¹The University of Texas at Austin, ²University of Tehran, ³Stanford University

Motivation: Prediction tasks on hypergraphs.

- Hypergraphs arise in many application domains.
- Many important problems can be formulated as classification and prediction problems for hyperedges.

Our work:

- NetVec, a novel hierarchical framework for scalable, unsupervised embeddings of hyperedges and nodes.
- NetVec can be coupled with any existing network embedding algorithm to reduce the amount of compute time.

VS.

Background

Previous Approaches

- Hyperedges are not represented explicitly
- Takes days to find embedding of hypergraphs with millions of nodes and hyperedges
- Hyperedges are represented explicitly

NetVec

 Finds embedding of hypergraphs with millions of nodes and hyperedges in just a few minutes

A hypergraph with 3 hyperedges and 6 nodes.

Star expansion of the hypergraph above,

(iii) The goal of *refinement* is to improve embedding obtained from the initial embedding algorithm. If a set of node S in a hypergraph H_{i-1} were merged to form a node n in the coarser hypergraph H, the embedding of n in H, is assigned to all the nodes of S in H_{i-1} at the beginning of refinement

Igorithm 2: Refinement

Input: Bipartite graph representation $H^* = (V^*, E^*, \omega, W)$ of hypergraph $H = (V, E, \omega, \delta)$, vector representation z_u for all $u \in (V^*)$, neighborhood function $\mathcal{N}(u)$, depth K, parameter ω **Output:** Refined vector representation h_u , $\forall u \in (V^*)$ $b_u \leftarrow z_u, \forall u \in (V^*)$ for i = 1 to K do for $u \in E$ do $\tilde{z}_{u}^{i} \leftarrow \sum_{v \in \mathcal{N}(u)} w_{uv} z_{v}^{i-1} / \sum_{v \in \mathcal{N}(u)} w_{uv}$ $z_u^i \leftarrow (1-\omega) z_u^{i-1} + \omega \tilde{z}_u^i$ end for for $u \in V$ do $\tilde{z}_{u}^{i} \leftarrow \sum_{v \in \mathcal{N}(u)} w_{vu} z_{v}^{i-1} / \sum_{v \in \mathcal{N}(u)} w_{vu}$ $z_u^i \leftarrow (1-\omega) z_u^{i-1} + \omega \tilde{z}_u^i$ end for end for $h_u \leftarrow z_u^k, \forall u \in (V^*)$

Abstractly, the refinement algorithm uses Jacobi over-relaxation to solve the linear system, Lz = 0 using the relaxation parameter ω , where L is the Laplacian matrix of H^{*}. It is defined as D - W where D is the diagonal matrix with diagonal elements $d_{ii} = \sum_i w_{ii}$, W is the weighted adjacency matrix of H^* .

Results (hyperedge prediction)

We compare NetVec with Hyper-SAGNN[1], the state of the art supervised hyperedge prediction framework and Node2Vec on 4 standard datasets listed below.

		NODE TY	PE .		#V		#E
S	USER	LOCATION	ACTIVITY	146	70	5	1,436
VIELENS	USER	MOVIE	TAG	2,113	5,908	9,079	47,957
UG	USER	DRUG	REACTION	12	1,076	6,398	171,756
RDNET	HEAD	RELATION	TAIL	40,504	18	40,551	145,966

Area Under Curve (AUC) scores for hyperedge prediction. Time is in seconds.

	G	PS	Mov	IELENS	D	RUG	Wol	RDNET
	AUC	TIME	AUC	TIME	AUC	TIME	AUC	TIME
VEC	94.4	10	96.9	20	98.0	900	92.8	950
er-SAGNN	90.6	1800	90.8	11,160	95.9	39,540	87.7	82,800
E2VEC	94.0	10	79.8	19	97.4	895	89.0	940

For hyperedge classification task, we compare NetVec with two other multi-level frameworks MILE[2], and GraphZoom[3] on large and smaller hypergraph datasets.

Results (hyperedge classification)

Hyperedge classification for small hypergraphs. Time in seconds. Node2Vec is the initial embedding algorithm.

NETVEC MILE GRAPHZ NODE2V

Hyperedge classification for large hypergraphs. Time in seconds. Node2Vec is the initial embedding algorithm.

NETVEC MILE GRAPH

References

Contact

Sepideh Maleki: Smaleki@cs.utexas.edu

ATA SET	NODES	Hyperedges	EDGES	CLASSES
ORA	2,709	1,963	10,556	7
ITESEER	3,328	2,182	9,352	6
ORUM	6,132	8,274	611,684	2
нем2Вю	295,911	727,997	2,911,988	12
MAZON	358,017	135,268	10,155,376	2
IVE JOURNAL	1,423,948	1,195,945	35,684,736	2
RIENDSTER	8,724,335	2,917,783	94,193,160	2
	1.72.6			

	CORA		CITESEER		CORUM		Снем2Вю	
	ACCURACY	TIME	ACCURACY	TIME	ACCURACY	TIME	ACCURACY	TIME
	76.5	20	58.0	20	93.4	75	81.9	2,760
	77.2	20	57.0	25	91.7	144	-	20 -0
ООМ	77.2	33	57.5	45	93.4	155	<u> </u>	- <u>-</u>
EC	76.0	35	57.1	45	94.3	165	71.8	9,025

	AMAZON		LIVEJOU	JRNAL	FRIENDSTER	
	ACCURACY	Time	ACCURACY	TIME	ACCURACY	TIME
С	81.4	120	62.8	480	55.7	430
	55.8	3,900	55.4	4,620	82 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	-
Хоом	63.1	79,140	64.4	262,860	-	-

[1] Ruochi Zhang, Yuesong Zou, and Jian Ma. 2020. Hyper-SAGNN: a self-attention based graph neural network for hypergraphs. In International Conference on Learning Representations (ICLR).

[2] Jiongqian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2020. MILE: A Multi-Level Framework for Scalable Graph Embedding

[3]Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. 2020. GraphZoom: A multi-level spectral approach for accurate and scalable graph embedding.

